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2. Basic relations for developed sea spectra: an overview

The wave age, &, is defined as the ratio of the phase velo
corresponding to the spectral peak frequency w to the mean wind
(e.g., at 10 m height):
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for a spatially hemogeneous wave field - yields a Kolmogorov spectrum determined by
the inverse conservative cascade of wave action:

F(k) = apP1/3 k -10/3 2.3)

This corresponds to S(®) ~ w1173,

One can further idealize the situation by assuming that the wind energy input is
concentrated at wavenumbers (the "generation range") separating these two inertial
subranges. As discussed in the following sections, the forms (2.2) and (2.3) are not very
useful, for we do not know in advance how the input fluxes, Q and Py, are related to the
inertial fluxes Q and P through the spectrum. On dimensional grounds, P and Q can be
expressed in terms of the mean wind speed U as:

P o g2U4 Qo U3 (2.4)
Then, the entire equilibrium range can be presented in the form
F(k) = BUYg) 2 k 4+ S(w) = 2pg2(U/g) >+ @.5)

which reduces to (2.2) or (2.3) by setting p=1/4 or u=1/3 for { <1 and § >> 1,
respectively. Furthermore, [ is the generalized Phillips constant whose value can be
expressed in terms of the Kolmogorov constants. In general, p is a slowly decreasing
function of the wavenumber [Glazman et al., 1988; Glazman and Weichman, 1989;
Glazman and Srokosz, 1991]: u=p(k), Fig. 1. Its maximum lies in the subrange associated
with the inverse cascade. At frequencies above the generation range, | passes through
1/4 and reaches zero in the Phillips "saturation” range [Phillips, 1977] (if the energy input
is sufficiently high for such a range to occur). In the Phillips range the spectrum tends to:

F(k) =pk 4 (2.6)

This corresponds to a non-Gaussian field of the surface height variation characterized by
cusped wave crests. WTT is not applicable to the strongly nonlinear waves described by
(2.6). The drop of it below 1/4 (i.e. from weak turbulence to stronger nonlinearity) can
be described based on a heuristic theory of multi-wave interactions [Glazman, 1992].
Experimentalists usually report an overall apparent value of the exponent and a wave-

age-dependent value of the Phillips constant B in the power laws (2.5). This "effective”



exponent yields-an apparent fractal (Hausdorff) dimension of the surface: Dy=2+p
[Glazman and Weichman, 1989]. Being a function of the relative extent of the idealized
subranges (2.2),(2.3) and (2.6), the apparent "co-dimension" p is determined by the wave
age. Theoretical dependencies for the effective p and B as functions of & are presented in
section 4.

The low-wavenumber cutoff (the "outer scale” of the spectrum) is steep and it can be
approximated by a smeared unit step function H(k/kp-1). A commonly accepted form of
H(.) is given by exp[-(k/kg)2] - as follows from the empirical Pierson-Moskowitz [1964]
(P-M) spectrum. Thus, the energy-containing range is approximated by:

F(k) = B(U%/g)2H k -4+21 exp[-(k/kp)2] 2.7

Using the dispersion relation for gravity waves, the low-frequency cut-off is related to the
wave age (2.1) by:

ko = (g/U?)E2 2.8)

Typical values of & for open ocean waves lie in the range 2 to 3 [Glazman and Pilorz,
1990]. The limiting wave age for the "fully developed" sea still remains unknown, and
the existence of the FDS state hypothesized by Kitaigorodskii [1962,1970] has been
questioned both on theoretical and experimental grounds {Glazman, 1991b] along with
the empirical P-M spectrum which claims to represent FDS [Pierson, 1991].

Analyzing the spatial evolution of stationary wave fields, we shall employ in sections
5 and 6 the well known empirical relationships between the wave age, &, the non-.
dimensional wind fetch, X (X=gx/U?2 where x is the dimensional fetch), and the non-
dimensional wave energy, e:

£ =28 2.9
e=B%b, (2.10)
E=cCxe 2.11)

Sometimes these are called fetch laws. Of particular interest are variations in the values

of 4,B,C,a,b, and ¢ revealed by comparing reports of different experimentalists. The



dimensionless wave energy (called alternatively the generalized non-dimensional fetch
[Glazman, 1991b)) is defined as

o {FGOdk _ [S(@)do
T (U2 T (UZp)?

(2.12)

Since only two of the three equations (2.9)-(2.11) are independent, we shall consider only
(2.9) and (2.11). Experimental data on the parameters of the fetch laws are summarized
in Table 1. Conditions characterizing individual experimental setups are highly diverse.
As explained in section 5, the differences in atmospheric boundary layer stratification, in
the range of the wind speed and fetch values covered, and in other factors including local
depth and hydrography have effects on the parameters reported in Table 1.

Fetch laws (2.9)-(2.11) also follow from the action and energy transfer equations
[Zakharov and Zaslavskii, 1983; Glazman and Srokosz, 1991]. The derivation involves
certain simplifying assumptions regarding the wind input in a developed sea state. By a
developed sea we understand a wave field having a broad wavenumber spectrum, such
that a short-range asymptotic of the structure function D(r) = <[{(x+r)-{(x)]2> for the
surface elevation field {(x) due to gravity waves reduces to [Glazman and Weichman,
1989]

D(r,0) = L2W(u,0) r2-2n | (2.13)

where the dimensional coefficient L (called the "topothesy") is independent of the
spectral peak wavenumber, ko: L2 = B(U2%/g)2Hf(1,0). Since D(r,0@) is evaluated for
small spatial lags r, equation (2.13) pertains to the high-wavenumber range of the gravity
wave spectrum dominated by the direct energy cascade. In particular, one can use p=1/4
and express P in terms of the Kolmogorov constant oq. In general, (2.13) is valid if

(kot/2)2 « uF(u)/(1-p)2T (1) (2.14)

[Glazman and Weichman, 1989]. Under this condition, the field {(x) exhibits "fractal
geometry" characterized by a pattern of continuously "nested" wavelets of a
monotonically decreasing size. The wave slope variance, estimated as ¥2 = D(L)/A2 where
A is the relevant (short) spatial scale of interest, becomes independent of the dominant
wavelength 2n/kg. As a result, neither wind fetch nor wave age can appreciably

influence y2. Due to the exclusive role of the wave slope for the induced air pressure and
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shear stress fields (Chapter 4.2 in [Phillips, 1977]), we anticipate the wind-wave coupling
to be independent of the wind fetch. Hence, in a developed sea, the mean wind U
becomes the only external parameter of the wind input, and at scales satisfying (2.14) we
assume a universal regime of air-sea interactions.

The wind input may be envisioned as occurring in the fashion of the Miles
mechanism, i.e., being proportional to F(k) and attaining its spectral maximum at
wavenumbers above g/U2. The integral fluxes of wave action and energy take the form:

Py = [p*(k) dk = eR§ g2U4, 2.15)
Qu= [a* k) dk =€Rg U3, (2.16)

where p*(k) is the spectral density of the action input flux (per unit surface area and per
unit mass of water), q*(k) is the spectral density of the energy flux. Both are confined to
the high-wavenumber range. In the wave modeling literature, these are called the wind
source functions. € is the ratio of air and water densities. For a developed sea, the bulk
transfer coefficients, R§ and R}, are assumed to be independent of the wind fetch. If,

however, one considers a broad range of sea development stages - as covered in Table 1-
the assumption of constant R} and RY has to be relaxed to allow for a (relatively weak)

dependence of these "constants” on the non-dimensional fetch. Accounting for wind-
wave interaction at lower frequencies (e.g., for the feedback flux of momentum from fast-
moving long waves to the atmosphere) would also result in a dependence of Rf and R§

on additional parameters.

3. Buoy observations of developed seas at equilibrium with a steady wind

The present empirical knowledge on the wave field evolution is based largely on
observations at limited wind fetches and relatively small depths - as encountered in the
Great Lakes, North Sea and other closed or semi-closed basins convenient for field
experiments (e.g., [Toba, 1973], [Donelan et al., 1985], [Dobson et al., 1989]). These
observations consistently show |t = 1/4 and support the FDS concept with the limiting
wave age, EEps , about 1.2. Actually, some of these observations show much greater
values of the wave age [Ewing and Laing, 1987], although such cases are routinely
discarded by the investigators as allegedly irrelevant to wind-driven waves. Observations
in open ocean regions with stable winds and large wind fetches are relatively rare and



they report § >> Egps {Glazman and Pilorz, 1990; Glazman, 1991a] and a different power
law S(w) ~ oP, where p can reach 3 [Grose, et al., 1972].

We examined a two-year series of wind and wave observations by autonomous
NOAA buoys operated by the National Data Buoy Center (NDBC). Most of the
observations selected for our data set are from the Pacific trade winds zone near the
Hawaiian Islands, Fig. 2. This region is characterized by large values of wind fetch and
duration. A number of observations were added also from NDBC buoys in the North
Atlantic - to cover cases of moderate sea states with £ near 1.

Only the buoys of the Nomad type were used. These buoys' hulls are boat shaped, 6
m long and 3 m wide. The anemometer height is 5 m. Assuming neutral stratification of
the marine boundary layer we referenced the mean wind to a standard height of 10 m.
(Accounting for actual stratification would yield only an insignificant correction to the
mean wind U.) The mean wind represents a 20-min average. The size of the buoys as
well as the accuracy of spectral estimates allowed us to analyze the range of wave
frequencies fj from 0.03 Hz to 0.35 Hz with the Af step of 0.01 Hz. Since these buoys
provide only the frequency spectra, the directional properties of the wave field remained
beyond the scope of the present work. The buoys report data on the hourly basis, with a
few exceptions - when the interval is three hours.

Our consideration was limited to steady wave fields at equilibrium with the observed
statistically stationary wind. The data set was prepared by browsing through thousands
of continuous wave and wind observations with the goal was to discard cases in which
the dominance of a given wind as the main factor determining the observed spectrum
could be questioned. With practically no limitations on the length of the (hourly) records
we were able to check time histories for wind speed and direction, wave spectra and wave
age, as illustrated in Figs. 3-5. The cases with noticeable linear trends and, generally, all
cases with relative variations of wind speed in excess of ten percent of the mean values
(calculated for each six hour interval) were eliminated. The wind direction was required
to remain within plus or minus 15 degree of the mean direction. Also we eliminated cases
in which wave spectra showed appreciable temporal evolution (third panel from the top in
Figs. 3-5). A few typical cases in which wave spectra were classified as stationary (Figs.
3 and 4) or non-stationary (Fig. 5) are illustrated. Finally, we ensured that the wave field
contained no significant swell. By the swell we understand a wave system generated in a
remote location by a wind field whose speed and direction are noticeably different from
the local wind. To eliminate such cases, we checked the shape of wave spectra for
occurrences of multiple peaks of comparable size and other conspicuous features
identifying mixed seas. This procedure proved successful in an earlier study [Glazman
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and Pilorz, 1990] to which the reader is referred for details and additional illustrations.
The total number of "ideal" steady state cases retained for subsequent analysis was 629.

The wave age § was estimated using the spectral peak frequency, f;;, and mean wind
U. The effective "fractal co-dimension”, |, and the generalized Phillips constant, 3, were
derived from the observed spectra S(f) as follows. We integrated S(f) and -1S(f)
numerically from a certain fi,,;, > f( to the high-frequency cutoff fi,,,x = 0.35 Hz to
obtain wave energy E and action N estimates for this "equilibrium" range. Requiring
that E and N coincide with the energy and action obtained by integrating the analytical
wave spectrum (2.5) yields two equations for p and B:

fI'['lifl)( fmax
2Bg2(U/gy™  [-S+andr =E , 2B g2V [romdr=N | 3.1)
min min

The prime in B’ distinguishes this quantity from B appearing in (2.5) and (2.7) where
angular frequency w is used. Equations (3.1) have been solved by iterations considering
fmin/fmax as a small parameter. Only the cases with fipin/fmax < 0.7 were used in these
calculations, and only the spectra containing at least 10 frequency points within the
selected range were considered. The relationship between B and P is

B= ﬁ'(2n)4(1“tl) (3.2)

The integration limit fy,;, must lie sufficiently above the spectral peak frequency, fp, in
order to obtain [ representative of the "equilibrium range." Practically, we selected fi,in
to be a multiple of fo: fijin = 1.5fg. It was found that in the logarithmic coordinates, the
typical shape of wave spectra in the given range fy,in.fmax 18 convex, i.e.
(12(logS)/d(logf)2 < 0. Figure 6 illustrates a few typical cases. An interpretation of this
observation is offered in section 4.

A more traditional way of estimating the spectral exponent and the Phillips constant is
to plot the observed spectrum in logarithmic coordinates and then fit a straight line to all
the points within the selected frequency range. Unfortunately, this procedure does not
guarantee correct values of E and N. Besides, the p and B so derived are sensitive to the
high-frequency range of the wave spectra which may be affected by the buoy hull
characteristics. In Figure 7 we illustrate the agreement between the observed spectra and
the fitted power-law forms.
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In Figures 8 and 9, p and P obtained using (3.1) and (3.2) are plotted versus wave
age. The plots show that £ can exceed 3, which is well above the limit of the "fully
developed sea.” Evidently, a wave age greater than 2 is a typical feature of open ocean
waves. Furthermore, the plots exhibit a monotonic growth of p as the wave age
increases, - tending to about 0.5 at sufficiently large £. As suggested in sections 5 and 6,
such large values of B (noticed first by Grose et al. [1972]) are associated with the
advection of the wave energy in a spatially inhomogeneous wave field.

The high values of £ and t in Figs. 8 and 9 may be not the largest possible in an open
ocean. When preparing our "ideal” data set, we may have unjustifiably eliminated some
legitimate cases with particularly large €. Indeed, our requirements on the wind history
were very rigid. However, this conservative choice eliminates the well-known

conceptual difficulty regarding the separation of swell from a wind driven sea.

4. The shape of the wave spectrum

The observed trends in p and B provide important clues regarding the energy balance.
To better understand the connection we shall first derive the trends theoretically - based
on the results of WTT for an isotropic wave field.

As was suggested earlier [Glazman and Srokosz, 1991], one can approximate the

actual spectrum F(k) characterized by a gradually decreasing value of p by a composite
spectrum, Fq(k):

Bp(U%/g)2/3 k-10/3exp[-(k/k)?) for 0 <k <k,

F.(k) = 4.1)
’ BUg)1/2 1712 for ky, <k < oo

The two branches in (4.1) correspond to two basic regimes of the energy and action flow,
as mentioned in section 2. Here, Bq,p are universal constants which can be expressed in
terms of the Kolmogorov constants (they play only an intermediate role in this
derivation). The spectral peak wavenumber kg is given by (2.8), and the spectral

maximum in the energy flux from wind to waves is assumed to occur at
ky = (g/U2N2 4.2)

This is N-2-times higher than the Phillips resonant wavenumber g/U2. The latter, of
course, is obtained by equating the mean wind speed to a wave phase velocity. The
correction factor -2, which is about 2, is inspired by the Miles theory wherein the fastest
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growing modes have wavenumbers greater than g/U2. Earlier [Glazman and Srokosz,

1991}, this important factor was ignored.
The requirement that the two branches of (4.1) meet at k=k, yields a relationship

between the universal constants:
Bp = [5qu1/3 (4.3)

Since the actual spectral shape (2.7) with p = p(k/kq) is not known, and because the
experimental data provide only the overall, effective, exponent, we shall again estimate
the apparent i for the entire range. A requirement that the composite spectrum (4.1)
yield the same integrated energy and action as would follow from (2.7) with a constant p
yields two equations for p and B:

BI(1-w)€A0-1) = 1'(2/3,1)€83n1/3 + (4/3)n3 (4.4)

BI(5/4—p)E50-M) =T(11/12,7)E! 13173 4 14 4.5)
where

B = B(&)/B, and T=(M/§)? (4.6)

Here I'(a,b) is the incomplete Gamma function. In the derivation of (4.5) we used the
dispersion relation w=Vkg to eliminate ® from the spectral density of the wave action,
N(k)=F(k)/®. The system (4.4),(4.5) has a simple solution, B and p, derived in Appendix
A.

Functions B(§) and p(€) are plotted in Fig. 10 for several values of . In Fig. 11 we
plot the result for 1=0.7 which best agrees with the trends observed in Figs. 8 and 9.
Apparently, at £ near 1, B(€) can be approximated (through a least-square fit) by a power
law

BE)~ &7¢ , 4.7)

which allows one to compare the theoretical prediction with the empirical data of
Donelan et al. [1985]. As seen from Fig. 11, the agreement is quite good. Finally, we
should emphasize that the wave-age-dependent f and p should be viewed as ad hoc
parameters - a consequence of a decrease in the actual value of p(k/kg) with an increasing
distance from the spectral peak.

Apparently, within the appropriate range of the wave age values, the predicted trends
are in reasonable agreement with the observations in Figures 8 and 9, while at too small
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and too large § these WTT-based predictions disagree with the observations. At low &,
the value of y approaching zero can be explained by incorporating the Phillips range (2.6)
into the composite spectrum model. A dynamical model describing transition from the
weak turbulence regime of tetrad interactions to a regime of stronger nonlinear wave-
wave interactions is offered in [Glazman, 1992]. The large values of i approaching 1/2
at § » 1 are interpreted in the next two sections, along with their implications for air-sea

interactions.

5. Spatially inhomogeneous wave field

Conservation of the wave action flux in the inverse cascade is consistent with the
traditional understanding of the local wind-wave equilibrium as attained due to the
energy dissipation at high-wavenumbers. Indeed, according to the Zakharov-Zaslavskii
model [1982, 1983] (herein referred to as Z-Z), the inverse energy cascade is zero, hence
the entire energy flux from wind goes toward high wavenumbers. In what follows we
show that, for a developed sea state, such a simple and attractive picture is inconsistent
with both the observed wave spectra and the observed wave field evolution: the large
values of p and the high values of 4,4 and ¢ in the fetch laws (2.9)-(2.11) reported in
Table 1 point to a non-conservative spectral flux of wave action accompanied by a
considerable leak of energy to the low-wavenumber range.

The Z-Z model for the spatial evolution of a wave field provided the first theoretical
explanation of the power law (2.11) (from which the other two laws follow). The spatial
evolution of a statistically stationary wave field is due to an intrinsic anisotropy of wave
spectra. It is well known that the two-dimensional wave spectra F(k) are characterized by
a rather narrow angular distribution with the dominant wave propagation in the direction
of the mean wind. Explanations of narrow angular spectra have been suggested by
Tsimring [1989] and Zakharov and Shrira [1990]. Apparently, a preferential direction of
wave propagation should result in an advective flow of the wave energy and action. The
transfer of the wave action spectral density, N=F(k)/w, is described by

V(egN) + V- T(k) =p G.1)

where ¢g = ow/dk and V| -T(k) is the interaction (collision) integral for gravity waves, p

is the source function for the spectral density of the wind input. Z-Z assumed that the
advective term in the left-hand side has no appreciable effect on the shape of the wave
spectrum, except for the value of kg . In other words, at k>kg the wave action flux is

conserved: ij-T(k) dk=0 and equation (2.3) remains approximately valid for most of
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the wavenumber range. Then, integrating (5.1) over all wavenumbers yields a crude
model for the wave field spatial evolution

v. jcgNdk =P, (5.2)

where Py, = Ip dk is the total input flux which is cascaded toward low wavenumbers.

Assuming no variations normal to the wind vector, the spatial evolution occurs only
along the fetch x. Then, substituting (2.7) with p=1/3 into (5.2) yields an equation for
the spectral peak wavenumber:

P13 =
53; ( gp—zu—o[k'mﬂcxp[—(ko/kﬂ]dk )=P, (5.3)

For a developed sea state, in which (2.14) holds, P, depends only on the mean wind:
P, =eR,g2U4, (6.4

where € is the ratio of the air and water densities and Rp is the (constant) bulk coefficient
of action transfer from wind to waves. Equation (5.4) can be obtained not only on
dimensional grounds but also from a spectral model of wind input as presented in

Appendix B. The non-dimensional wind fetch is defined as
Using (2.8) and (5.4), an exact solution of (5.3) takes the form of equation (2.11) with

c=3/14,  C=[4(eRp)M3/oy['(7/6) 1314 (5.6)

[Zakharov and Zaslavskii, 1983]. Expressions (2.9) and (2.10) for the non-dimensional
wave energy e are derived by substituting (2.7) with u=1/3 into the integral (2.12) and
using (2.11) and (5.6). Thus we arrive at

a=3/8, a= [ap(eRp)mr(z/3)/2]-a 5.7
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Comparing the exponents a, ¢ with the data in Table 1 we find appreciable
discrepancy with all experiments. Partly this might be due to the fact that many of the
observations in Table 1 are dominated by cases of moderately developed seas with & < 1.
For such cases, the direct energy cascade dominates wave dynamics, and the assumption

ij-T(k) dk=0 must be replaced with the corresponding statement for the spectral energy
flux: JVk-T(k) wdk=0. However, a more interesting, additional, source of the

discrepancy, as suggested in the following sections, is due to the fact that the
Kolmogorov spectra (2.2) ignore the advective transfer of the wave action. Hence, they
would not be valid even if the inverse cascade did dominate the wave dynamics.

In the absence of ambient currents and sea level variations, the integrated energy
balance, provided the spectral energy flux in the direct cascade is (approximately)
conserved, can be approximated by [Glazman and Srokosz, 1991}:

V. jch(k,x)dk =AQ (5.8)

where AQ = J(q‘“ +q)dk is the net integrated input of the wave energy (wind input

minus small-scale dissipation). Assuming AQ to be proportional to U3 one arrives
ultimately at :

aa—x 5832(U2/g) [k7/2+2Mexpl-(ko/k)2]dk =eRqU3 (5.9)
0

where the general form (2.7) was used for the wave spectrum, and Rq is the bulk
coefficient of the net energy input. For the wind input, the form eR§ U3 is confirmed by
empirical source functions - as shown in Appendix B, while the breaking wave
dissipation term jq'(k)dk o« U3 is justified, for instance, by Phillips [1985]. In this
formulation the integral energy balance is controlled by both the advective transfer due to
the wave group velocity and the growth of the dominant wavelength with fetch due to

nonlinear wave-wave interactions.
Integrating (5.9) over relatively short segments of x, over which Rq can be assumed

constant [Glazman and Srokosz, 1991], one finds the solution in the form (2.11) with

c=1/(5-4p) , C=[4eR /BT (5/4-W)]¢ (5.10)
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Using (2.7), equations-(2.9) and (2.12) yield:

a=1/(4-4y), A= [Pra-w/2y-e (5.11)

For i = 1/4 this is:

a=1/3 , a=(0.613p)13 | (5.12)
and equations (5.10) become:
c=1/4 C=[4eRq/B14 (5.13)

Evidently, these values are closer to the data of Table 1 than are the values given by (5.6)
and (5.7).

Variations of the coefficients in Table 1 can be explained based on (5.10) and (5.11) -
as a result of variations in the effective value of . In Figures 12 and 13, the data of
Table 1 are plotted as points on the planes {¢,C}and {a,4}. To compare these with the
predicted trends, we also plot functions C=f;(c) and A=f,(a) derived from (5.10) and
(5.11) by eliminating p. Parameters B and Rq which provide the best fit to the
experimental points are: B =3 10-3 and Rq = 4. 10-5 . While this value of B is in
agreement with the data, the coefficient Rq is not known from direct measurements. In
Appendix B this coefficient is shown to be consistent with empirical data on the wind
input spectral flux q*(w). The varying p required for the explanation of the observed
trends is associated with a (relatively weak) dependence of p on § - as predicted in
section 4. Hence, the trends found in Table 1 are explained by the fact that different
experiments covered different (although overlapping) ranges of the wave age. This was
so not only because of different wind fetch and wind speed ranges covered by different
observations but also because of differences in atmospheric boundary layer stratification
(in different regions and seasons) which affects the values of Rq and Rp. Indeed,
coefficients Rq and Rp can be included into the fetch to highlight their role as a scaling
factor in equations (5.3) and (5.9).

In conclusion, let us show that the main results (5.10) and (5.11) can be further
refined by adding a feature consistent with our previous observations. Specifically, let us
account for possible effect of a wave-age-dependent B on the fetch laws' coefficients.
Such a correction becomes particularly relevant for moderate sea states with € near 1. To
this end we notice that, while allowing B to be a function of the wave age - hence of the
wind fetch x - in the left-hand side of (5.12), we may not have to worry about a
corresponding refinement of the wind-wave interaction coefficient in the right-hand side.

As suggested in the end of section 2, the wind input can be approximately treated as
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being independent of the fetch. According to both the observed and the predicted trends,
Figures 9 and 11, the range of £ in which B experiences most of its variation ends at
about € =~ 1.5. In this regime of moderately developed seas, B can be approximated by a
power law (4.7) where s~ (.5 and S = 1. Then, equation (5.9) yields:

c=1/(5-41 -5) , C=[4eRg/BoT(S/4- W1, (5.14)
and in place of (5.11) we find:
a=1/(4-4 -5) , A= [Bol'(1-wy212 (5.15)

Evidently, the refinement is in the right direction, although it does not alter the result in a
crucial way.

6. Effect of energy and action advection on the spectral shape

Evidently, the simple theory presented above explains many features of the wave field
spatial evolution. However, the assumption that the term V-(cgE) in the energy transfer

equation (or term V-(cgN) in (5.1)) has no influence on p is not always justified. Indeed,
the values of p yielding best agreement with the data are generally greater than those
obtained with Kolmogorov-type spectra. In Figure 14 we plot cand C, given by (5.10),
versus JL - to show that the range of ji implicit in Figures 12 and 13 overlaps but does not
coincide with that based on the purely inertial spectra (2.2) and (2.3). This is also evident
from our direct observations, Fig. 8. Greater values of p called for by these
comparisons can be explained as follows.

The group velocity term in (5.1) (and a similar term in the spectral energy balance)
describes a loss of wave action (energy) from a given spectral band due to the advective
transport. The effect is stronger at lower frequencies for which cg is greater. Therefore,
the lower-frequency spectral components loose wave action (energy) at a faster rate than
do the higher-frequency components. This should lead to a flattening of the spectral
density function, hence to an increase of the apparent pt. Let us assess effectiveness of
this mechanism.

The characteristic time t; associated with the action (or energy) advective transfer is

found by scaling the advective term in the transfer equation (5.1). This yields

V)
tc’1 ~ 2kxx* 6.1)
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where xx* is the characteristic spatial scale of the problem, which of course is the wind

fetch. The characteristic time for the action (or energy) spectral transfer due to nonlinear
wave-wave interactions in the resonant wave tetrads is given by (e.g., [Kitaigorodskii,
1983]):

ty-] ~ wak)4 6.2)
where ak is the steepness of the wavelets on scale k. The ratio

—:% ~ 2(ak)? kxx (6.3)
provides a measure of the relative importance of the non-linear four-wave resonant
interactions as compared to the advective transfer. At high wavenumbers, the wave
steepness is higher than that at low wavenumbers, - due to the statistical self-affinity of
the wave profiles [Glazman and Weichman, 1989]. Hence, at a large wind fetch, the
collision integral dominates dynamics of short gravity waves. However, at wavenumbers
of order g/U2 , i.e. below the generation range, (6.3) is estimated as 2y4 X, and the
characteristic wave slope variance y 2 is of order 10-3 . Therefore, at non-dimensional
fetch X < 105, effects of the wave field spatial inhomogeneity resulting in the advective
transfer of wave energy and action must be taken into account. These effects are
expected to raise the effective value of g above 1/3 by removing energy from the low-

wavenumber range at a greater rate than from higher wavenumbers.

7. Conclusions

Even in its present "naive" form, WTT explains, at least qualitatively, many
phenomena in wind-generated gravity waves observed in open ocean. However, a
number of important issues remain unclear. These include the limiting shape of the wave
spectrum as the fetch tends to infinity and, more generally, the relevance of the FDS
concept for ocean waves. Also, additional effort is required to understand the role of the
angular spectrum and the effect of wave field's anisotropy on the energy and momentum
exchange between the wind field and the fields of surface gravity waves and underlying
larger-scale motions.

Anisotropy of the wave field plays a special role. By providing the necessary
condition for an advective transfer of energy in the direction of the dominant wave
propagation it modifies the energy balance. In place of a purely inertial inverse cascade

of the wave action with a zero spectral flux of energy (as follows from WTT for an
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isotropic steady-state wave field), a non-conservative energy flux to the low wavenumber
range becomes possible. Ultimately, the energy is advected away from the wave
generation region. One consequence is that the local dissipation by breaking waves and
molecular viscosity acting at high frequencies is not the only, and possibly not even a
major, mechanism of energy loss. Indeed, the bulk coefficient Rq for the net energy input
(wind input minus high-frequency dissipation) - estimated indirectly in section 5 - does
not appear to be noticeably smaller than the coefficient R for the wind input alone -

estimated in Appendix B. Other, essentially non-local, mechanisms (e.g., wave
interactions with Langmuir circulation, internal waves, meso-scale eddies, ocean currents,
etc.) may be equally or even more important for the energy extraction from the wave
field. Accounting for such mechanisms requires inclusion of terms like pg(d+h)Vh into
the momentum transfer equation, where h is an averaged (over the dominant wave cycle)
surface height and d may be the depth of the upper mixed layer or of the thermocline. In
the energy transfer equation the terms like V(FU) and S(k):VU, where S(k) is the spectral
density of the excess momentum flux tensor (including the radiation stress tensor), are
required (Chapter 3.6 of [Phillips, 1977]). Depending on the nature of "large-scale” fields
h and U, various coupled problems can be studied to identify effective mechanisms of
wind-wave equilibrium. The ability of a wave field to induce larger-scale motions may
have important implications for ocean-atmosphere coupling.
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APPENDIX A: Solution of (4.4) and (4.5).
Divide (4.5) by (4.4), multiply the result by &, and denote the right-hand side of the
resultant equation by W(§,n):

I(5/4- /T (1-p) =¥(En) (A.1)
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The left-hand side can be simplified by expanding it in Taylor series about p = 0 and
neglecting terms higher than p2. Alternatively, one can fit a quadratic polynomial to this

function to find:

I'(5/4-p)T(1-u) = 0.9058 — 0.3022u — 0. 2295p2 (A2)
Then, the solution of (4.4) and (4.5) is found in a closed form as:

B =~ —0.6584+(4.3801— W¥(§n)/0.22951)1/2 (A.3)
Once | has been found, obtaining B(£) is a trivial task.

APPENDIX B: Empirical Data On R}

Experimentalists usually measure the spectral density, q*, of the energy flux from
wind to waves, and denote it by S;;,. Unfortunately, such measurements - conducted in

coastal regions - are available only for poorly developed sea states (wave age well under
1). Let us employ first an empirical form of S;,(®) due to Snyder et al. [1981], and

compare its integrated value to the net integrated energy flux, Q, in (5.9). Thus we use
Sin = max[0, Cqe(Uw/g-1)ogF (k)] (B.1)

where Cq=0.25i0.7. Replacing o with (kg)”2 and using (2.7), the integration over all

wavenumbers yields
Qin = [Sin dk =eRg U3 (B.2)
where the bulk coefficient of the (pure) wind input is

RY =BCql(1-21)(3-4p)]"! (B.3)

At the low degree of wave development characterizing Snyder's et al. observations, the
appropriate value of W is near zero and 8 = 10-2. Therefore, RY ~ 10-3 which is much
greater than the value of Rq predicted in section 5. Apparently, under such conditions,
the high-frequency-dissipation component of Rq is very important. The Snyder et al.
observations were conducted in the Bay of Abaco with the local depth of 9 m and wind
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fetch within 10 km. Under such conditions, the waves are generally steeper than those in
a developed sea, which explains why these observations show large input flux.

In the observations by Hsio and Shemdin in the North Sea [1983] the wave field was
more mature and the corresponding empirical source function was found to be:

Sin = max[0, Cqe(Uw/g-1)2mgF (k)] (B.4)

where the empirical coefficient Cq is 0.12. The local depth, 18 m, in this experiment
was still insufficient, although the fetch was greater than in Snyder's et al. experiments.

Al-Zanaidi and Hui [1984] used (B.4), however they found that the appropriate value of
Cgq varies between 0.04 and 0.06. It can be shown also that the empirical data

summarized by Plant [1982] are equivalent to Cq =~ 0.03. Phillips [1985] demonstrated
that Cq of this magnitude is consistent with certain other semi-empirical constants
characterizing wind-wave interactions, whereas larger values would lead to considerable
discrepancy.

Recently, an exact regime of tetrad wave-wave interaction in the direct energy
cascade, given wind input (B.4), was established theoretically [Glazman, 1992]. The
maximum value of Cq compatible with this regime follows from (6.12) of [Glazman,
1992]:

2
Cq = 11— (B.5)

With € = 10-3 and B =~ 5.10-3 - as found from Fig. 9 at £ = 1 - we estimate Cq=2510
2. This small value lends further credibility to the suggestion that, for deep-water waves
considered in the present work, the correct values of Cq lie in the range 0.02 to 0.04,
yielding R§ = Rq of section 5. In other words, the negative (high-frequency dissipation)
component of the net energy flux seems to be negligible compared to the wind input flux.
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Table 1

Field observations

Data £ = ge8 e=Bxb E=Cxe

source a a Bx 107 b C ¢
Dbsn 5.62 0.29 12.7 0.75 0.094 0.24
JONSWAP 7.94 0.33 1.6 1.0 0.045 0.33
Dnln 5.98 0.30 8.4 0.76 0.086 0.23
Phlps 1.6 1.0 0.089 0.25
Rss 1.2 1.1 0.084 0.27
Wilsh 1.9 1.0 0.069 0.29
Kahma 0.050 0.33
Mitsu 2.89 1.0 0.051 0.33
Glzmn 7.65 0.31

Abbreviation of data sources: Dbsn: [Dobson et al., 1989], JONSWAP: [Hasselmann et
al., 1973], Dnin: [Donelan et al., 1985], Phlps: [Phillips, 1977], Rss: [Ross, 1978] and
[Liu and Ross, 1980], Wish: [Walsh et al. 1989], Kahma: [Kahma, 1981], Mitsu:
[Mitsuyasu et al., 1971], Glzmn: {Glazman, 1991a].

December 3, 1992
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Captions for Figures.

Figure 1. Wavenumber subranges in an equilibrium spectrum of developed seas. Thin
solid straight lines represent power-law approximations, in the form k=4+2W, for the
specific wavenumber subranges: | decreases with an increasing distance away from the
spectral peak wavenumber ko. The thick-dash line represents a power law
approximation for the entire equilibrium range: the "effective value" of p is determined
by the relative extent of the constituent subranges.

Figure 2. Locations of main (Hawaiian) NDBC buoys used in the data set.

Figure 3. Time history of wind vector, wave spectrum and wave age observed at buoy
51003, illustrating a steady-state wave field at equilibrium with a given wind. Top panel:
wind vector; second panel: wind speed in m/s; third panel: contour plot of the wave
frequency spectrum evolving in time; bottom panel: wave age estimated using (2.1)
where U and @y are based on hourly buoy reports.

Figure 4. The same as Fig. 4, buoy 51002
Figure 5. Example of an unsteady sea state. See caption for Figure 3.

Figure 6. Typical shapes of statistically stationary wave spectra S(f) observed near the
Hawaiian Islands.

Figure 7. Empirical fit to the equilibrium range of wave spectra in the form of (2.5) for
which the effective values of p and B are calculated using (3.1). Solid curves are the
observed wave spectra: (1) at wind speed 11.8 m/s and wave age 1.9, (2) at wind speed
11.8 and wave age 2.2. Dashed curves: empirical fit (2.5).

Figure 8. The apparent "fractal co-dimension" [ versus wave age & calculated from (3.1)
and (3.2) for 629 spectra.

Figure 9. The generalized Phillips constant B versus wave age £ calculated from (3.1) and
(3.2).
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Figure 10. Analytical ‘solution of (4.4),(4.5) for three values of 1. Solid curves: 1=0.9.
Short-dash curves: 1=0.8. Long-dash curves: 1=0.7.

Figure 11. Solid and short-dash curves: solution of (4.4),(4.5) at 1=0.75 — for B(€) and y,
respectively. Long-dash curve: a regression curve approximating B(§)/4 by (4.7) for a
range of £ from 0.9 to 1.2. This empirical fit, characterized by s ~ 0.5, agrees with the
Donelan's et al. [1985] s = 0.55.

Figure 12. Parameters in equation (2.11). Solid curve: C as a function of ¢ obtained by
eliminating i from equations (5.10). Numerical constants providing the best fit to the data
points are: B=3 10-3, Rq=4 10-3. Diamonds: experimental data from Table 1. The
diamond marked by "W" represents the data of Walsh et al. [1989] who claim to have
observed the fully developed sea state.

Figure 13. Parameters in equation (2.9). Solid curve: 4 as a function of a obtained by
eliminating p from equations (5.11); diamonds: experimental data from Table 1. See also

the caption for Fig. 12.

Figure 14. Theoretical dependence of ¢ and Con W, €q.(5.10). Notice the range of p .
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